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Quick review of confounding

● Mixing of effects between the association under study and a third variable
● Properties of confounding variables

○ A ‘confounder’ is a common cause (direct or indirect via another variable) of both the 
exposure and the outcome

○ Once a ‘confounder’, not always a ‘confounder’! - DAG-dependent
○ Important: NOT on the causal pathway (intermediate) & not collider

2



Methods to control for confounding

In the design of the study:

● Restriction
● Matching
● Randomization

In the analysis of the data:

● Stratification (& pooling, weighting, standardization)
● Regression modeling
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In the design:
Restriction

● E.g. analysis only in females
○ Removes confounding by sex

● Often seen for certain age groups (e.g. 
we studied Exposure X in healthy 
individuals over 65).

● Careful! Lots of restriction = low 
generalizability of results
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In the design:
Matching

● In cohort studies:
○ Match exposed and not exposed 

persons on confounding factors
■ e.g.  age and sex matching

● What if many confounders relative to 
number of outcomes?
○ Propensity score matching 
○ Collapse many confounding 

variables into a single ‘score’ 
■ 0 to 1 = prediction of exposure 

based on these confounders
■ Match participants with similar 

scores (e.g., 0.41 and 0.42) 5



In the design:
Randomization

Credit: @epiellie

● Goal: groups on average at same risk 
for outcome before the treatment is 
assigned/given

● Confounding factors balanced on 
average between arms
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Methods to control for confounding

In the design of the study:

● Restriction
● Matching
● Randomization

In the analysis of the data:

● Stratification (pooling, standardization)
● Regression modeling
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In the analysis: 
stratification and 
pooling

● Divide the data into strata according to 
categories of the confounder

● Within each stratum, calculate 
stratum-specific measures of 
association

● If appropriate, pool information over all 
strata by calculating a weighted 
average of the stratum-specific 
measures of association
○ (e.g. Mantel-Haenszel formula)

● Assumption: Constant effect across all 
strata
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Problem with pooling?

What if the effect is NOT constant 
across all strata?
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When the overall magnitude of the relationship 
between the exposure and disease depends 

(differs, is modified) by the level of a third 
variable (called the effect modifier) in size or 

even direction.

Effect (measure) modification
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Difference: ‘effect modifier’ vs. ‘confounder’

● Effect modifier is a factor that modifies (alters) the relationship 
between the exposure and disease

● Provides insight into the nature of the biologic relationship 
between exposure and disease

● Thus, we do not want to control/adjust for effect modification – 
want to explore and report

● Not a nuisance, not a threat to validity
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Difference: ‘effect modifier’ vs. ‘confounder’

● A confounding factor distorts the measure of association relating 
exposure to disease because of its relationship with the exposure 
and outcome of interest in the population under study

● Confounding is a nuisance factor, does not provide biologic insight 
into the relationship

● It is a threat to the validity of the study
● Need to remove the effect of confounding to understand the 

exposure/disease relationship – we want to control/adjust for it
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Effect measure modification: visualized

13

A
Z1
Z2
Z3

Y

THIS IS NOT A DAG!!

Note: EMM cannot easily be shown in a DAG

The effect of A on Y is 
modified by levels of Z



Interaction: visualized
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B

Y

THIS IS NOT A DAG!!

Note: Interactions cannot easily be shown in a DAG

● The effect of A and B on Y 
interact

● Given A or B alone has less 
of an effect than given both 
together

A



Effect measure modification and 
confounding
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● Confounding is a nuisance effect that we want to ideally remove 
completely to isolate causal effects

● Effect measure modification is describing important variation of 
the exposure - outcome effect in levels of a third variable
○ We should report this

● If a variable is modifying the exposure effect on the outcome, it 
cannot be part of confounding based on causal structures!



Confounding and effect measure 
modification
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● The causal conception of confounding must happen before the 
exposure (open backdoor path… )
○ Temporality is crucial

● Effect measure modification can only happen after exposure
○ To evaluate whether confounding or effect measure 

modification is present cannot be decided solely based on 
inference from the data!

○ Cannot test for this



Wrap up:
In the analysis: 
stratification and 
pooling

● Divide the data into strata according to 
categories of the confounder

● Within each stratum, calculate 
stratum-specific measures of 
association

● If appropriate, pool information over all 
strata by calculating a weighted 
average of the stratum-specific 
measures of association
○ (e.g. Mantel-Haenszel formula)

● Assumption: Constant effect across all 
strata
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In the analysis: 
regression 
modeling

18

● Model relationship of exposure, 
outcome and other covariates

● Estimates the dependent variable 
based on a function of the explanatory 
variable(s)

● Type of regression model depends on 
type of data & form of dependent 
variable
○ Linear, logistic, Cox proportional 

hazards, Poisson, etc.
● Many use regression, few understand 

what it means… → excursion.



What is a statistical model?
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● Mathematical description of relationship between variables

● Relationship between:
○ Dependent variable (our outcome, disease) 

○ Independent (explanatory) variable(s)  (our exposure, treatment)



Regression model

● Estimates (predicts) the dependent variable based on a 

function of the explanatory variable(s)

● Type of regression model depends on 
○ Type of data

■ Count data, person-time data, repeated measures, etc.

○ Form of dependent variable
■ Binary, linear, ordinal, etc. 
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Regression model

Multifunctional tool used to:

1. Estimate (causal) effects

● Requires pre-defined underlying causal structure (DAGs)

2. Predict outcome

3. Learn from the given data

● hypotheses generation, exploratory, “descriptive”

→ How to use a regression model solely depends on the 

scientific question! 
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Regression model: examples

● Continuous outcome = linear regression 
○ Example: systolic blood pressure values, weight

● Dichotomous outcome (yes/no) = logistic regression 
○ Example: myocardial infarction, death

● Time-to-event = Cox proportional hazards model
○ Example: survival after treatment, time to death
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Simple linear regression model
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Relationship between variables is a linear function



Simple linear regression model: Deterministic part
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individual (outcome, e.g. cholesterol)

Independent variable (exposure, 
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Simple linear regression model: Stochastic part
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Simple linear regression model
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Multiple or multivariable linear regression
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Multiple or multivariable linear regression
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Multivariate vs. multiple or multivariable regression

● Multiple or multivariable: 

○ A model with multiple independent variables (=multivariable) that 

predicts a single outcome

● Multivariate: 

○ Modeling of data wherein an outcome is measured for the same 

individual at multiple time points (repeated measures), or 

○ Modeling of more than one outcome event (nested, clustered data)
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Population sample and regression
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How can we estimate the best line?
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How can we estimate the best line?
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Infinite possible lines
We need the “best” 

line



Sum of least squares
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Find the y-intercept and slope 
that minimize this quantity:



Coefficient interpretation
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Slope (𝛽
1
): 

● Expected change in the average of Y for each one unit increase in X

○ If 𝛽
1
= 0.85, then Y is expected to increase by 0.85 on average for each 

one unit increase in X

Y-intercept (𝛽
0
): 

● Average value of Y when X = 0

○ If 𝛽
0
= 0.25, then the average Y is expected to be 0.25 when X is 0

^

^

^

^



Parameter estimation example

● What is the relationship between mothers’ estriol level and the 

birthweight of their children?
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Estriol (mg/24h) Birthweight (g/1000)

1 1

2 1

3 2

4 2

5 4



Scatterplot: birthweight by estriol levels
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Coefficient interpretation
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Slope (𝛽
1
): 

● Birthweight (Y) is expected to increase on average by 0.7 (𝛽
1
) 

units for each one unit increase in estriol (X)

Y-intercept (𝛽
0
): 

● The average Birthweight (Y) is expected to be - 0.10 (𝛽
0
) units 

when estirol (X) = 0

○ Difficult to explain as we extrapolating in areas with no biological 

plausibility (i.e., an estriol level in women of 0 is not plausible)

^

^

^

^ ^



Logistic regression model

● Generalized linear model

● Regression model able to describe the relationship between a 

    dichotomous dependent variable and one/more than one

           independent variables

● Why we can’t use a linear regression model?



Dichotomous outcome Y(1,0), predictor X
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Y= 0

Y= 1

X



Dichotomous outcome Y(1,0), predictor X
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Y= 0

Y= 1

Linear regression

X



Dichotomous outcome Y(1,0), linear predictor X(x)
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Y= 0

Y= 1

Logistic regression function

If this is our probability 
function …. 

X



Logistic regression model



Logistic regression model: example



Logistic regression model: example
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Coefficient interpretation - binary X
1 

(simple case)
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● If X
1
 is binary, e.g. drug use yes, no (coded as 1/0):

○ ß
0
 corresponds to the log odds of outcome for X

1
=0, i.e. non-drug user

■ Because if X
1
=0:    

○ ß
1
 corresponds to the log odds ratio between X

1
=1 and X

1
=0

■ Because if X
1
=1:   

■ 𝛽
1
=logit drug user - logit non-drug user = log(OR)

■ Thus, eß1 corresponds to the odds ratio between X
1
=1 and X

1
=0



Coefficient interpretation - continuous X
1
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● If X
1
 is continuous, e.g. diet score (0 to 50)

○ ß
0
 corresponds to the log odds of outcome for X

1
=0, i.e. score=0

○ ß
1
 corresponds to the log odds ratio for 1 unit increase in X

1

■ Thus, eß1 corresponds to the odds ratio per 1 unit increase in X
1
 

(i.e. 1 unit increase in diet score)



Remember: it is a model!

“All models are wrong, but some are useful”

(George E. P. Box)
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Back to confounding control...
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𝛽1: Coefficient of interest for interpretation 
 of results
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(e.g. if a person from study sample uses antihypertensives, after adjustment for potential 
confounders, their systolic BP is decreased on average by 20 mmHg)



Wrap up:
In the analysis: 
regression 
modeling
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● Type of regression model depends on 
type of data & form of dependent 
variable
○ We have shown linear and logistic, 

but Cox proportional hazards, 
ordinal logistic, Poisson, etc. work 
in analogous way

● Discussion questions: 
○ How many confounding variables 

can be put in the regression 
model?

○ How do you choose these 
variables?



Methods to control for confounding

In the design of the study:

● Restriction
● Matching
● Randomization

In the analysis of the data:

● Stratification (pooling, standardization)
● Regression modeling
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Final thoughts

● Makes sense to think about confounding control already in the design 
phase and not first when analysing data at end of study

○ This is not always possible (secondary data analysis)

● Research question should drive design (DAG), analysis and interpretation 
of results

● When done well, observational studies are just as credible as trials and fill 
in important knowledge gaps

● For statistical modeling questions, don’t hesitate to consult a 
biostatistician!
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Thanks!
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